
Python Programming

1 | P a g e

Topics to be covered:

Unit -6

Python Programming

2 | P a g e

Brief Tour of the Standard Library - Operating System Interface - String Pattern Matching,

Mathematics, Internet Access, Dates and Times, Data Compression, Multithreading, GUI

Programming, Turtle Graphics

Testing: Why testing is required ?, Basic concepts of testing, Unit testing in Python, Writing

Test cases, Running Tests.

Introduction to tkinter package
• Python provides various options for developing graphical user interfaces (GUIs). Most important

are listed below.

• tkinter: Tkinter is the Python interface to the Tk GUI toolkit shipped with Python.

• Tkinter is distributed along with Python software.

• It is a platform independent package.

• It has variety of GUI elements such as Label, Button, Menu, Frame..etc.

• These GUI elements are called “Widgets”

tkinter programming
• Tkinter is the standard GUI library for Python. Python when combined with Tkinter provides a

fast and easy way to create GUI applications. Tkinter provides a powerful object-oriented

interface to the Tk GUI toolkit.

• Creating a GUI application using Tkinter is an easy task.

– import the Tkinter module.

– Create the GUI application main window.

– Add one or more of the above-mentioned widgets to the GUI application.

– Enter the main event loop to take action against each event triggered by the user.

Python Programming

3 | P a g e

How to arrange these widgets in window
• All Tkinter widgets have access to specific geometry management methods, which have the

purpose of organizing widgets throughout the parent widget area. Tkinter exposes the following

geometry manager classes: pack, grid, and place.

• The pack() Method - This geometry manager organizes widgets in blocks before placing them in

the parent widget.

Syntax

– widget.pack(pack_options)

– Options are {expand, fill, side}

– expand –used to expand the widget space, not used by parent

– fill

• -NONE –default

• X – fills Horizontally ,

• Y – fills Veritcally

– side

• TOP-default

• BOTTOM-

• LEFT

• RIGHT

• The grid() Method - This geometry manager organizes widgets in a table-like structure in the

parent widget.

– Syntax

– widget.grid(grid_options)

– row: The row to put widget in; default the first row that is still empty.

– column : The column to put widget in; default 0 (leftmost column)

– The place() Method -This geometry manager organizes widgets by placing them in a

specific position in the parent widget.

• This geometry manager organizes widgets by placing them in a specific position in the parent

widget.

• Syntax - widget.place(place_options)

• height, width : Height and width in pixels.

• Example – l.place(height=100,width=200) # where l is widget

Label widget

• This is used to create static element which does not do anything except displaying the content

• Syntax:

– L=Label(parent,text=“Hello”,)

https://www.tutorialspoint.com/python/tk_pack.htm
https://www.tutorialspoint.com/python/tk_pack.htm
https://www.tutorialspoint.com/python/tk_pack.htm
https://www.tutorialspoint.com/python/tk_grid.htm
https://www.tutorialspoint.com/python/tk_grid.htm
https://www.tutorialspoint.com/python/tk_grid.htm
https://www.tutorialspoint.com/python/tk_place.htm
https://www.tutorialspoint.com/python/tk_place.htm
https://www.tutorialspoint.com/python/tk_place.htm

Python Programming

4 | P a g e

from tkinter import*

root=Tk()

root.title("KSR window") #giving the title to the window

l1=Label(root,text="Hello ")

l1.config(bg='green',fg='red',font=('calbri',30,'italic'))

l1.pack(side=LEFT) #setting the widget on left side of the root window

root.mainloop()

Example Program:

Output:

Canvas widget
This used to draw shapes like lines, ovals, rectangles, and arcs.

Example program:

Python Programming

5 | P a g e

from tkinter import*

root=Tk()

c=Canvas(root)

c.create_line(2,3,42,13) #drawing the line

c.create_oval(20,20,50,50) #drawing the oval or circle

c.create_arc(150,150,60,60) #drawing arc

c.create_rectangle(100,100,50,50) #rectangle

c.pack()

#drwing the shapes

Output:

Button widget

• The Button widget is used to display buttons in your application.

• Syntax:

B=Button(parent, text=‘ name’,command=fun_name)

Example program to print calculator

Python Programming

6 | P a g e

Entry widget

• The Entry widget is used to display a single-line text field for accepting values from a user.

• Syntax:

a=Button(root,text='+',command=printadd)

Program to Create Simple Calculator

Calc.py Output

from tkinter import*
root=Tk()
root.title('Calculator')
def printadd():

x=float(t1.get())
y=float(t2.get())
s1=x+y
s=str(s1)
res=Label(root,text="Result is:"+s)
res.grid(row=4,column=0)

def printsub():
x=float(t1.get())
y=float(t2.get())
s1=x-y
s=str(s1)
res=Label(root,text="Result is:"+s)
res.grid(row=4,column=0)

#creating widgets
l=Label(root,text="Simple Calculator")
l.config(font=('calbri',30,'italic'),bg='cyan',fg='red')
l1=Label(root,text="First no:")
l2=Label(root,text="Second no:")
t1=Entry(root,width=8)
t2=Entry(root,width=8)
a=Button(root,text='+',command=printadd)
s=Button(root,text='-',command=printsub)
#attaching he widgets to the window
l.grid(row=0,column=2)
l1.grid(row=1,column=0)
t1.grid(row=1,column=1)
l2.grid(row=2,column=0)
t2.grid(row=2,column=1)
a.grid(row=3,column=4)
s.grid(row=3,column=5)

https://www.tutorialspoint.com/python/tk_entry.htm

Python Programming

7 | P a g e

Menutest.py

Checkbutton, Radiobutton widgets

Checkbutton

• The Checkbutton widget is used to display a number of options as checkboxes. The user can

select multiple options at a time.

• Syntax:

• Cb= Checkbutton(parent,text=‘ ’)

Radiobutton

• The Radiobutton widget is used to display a number of options as radio buttons. The user can

select only one option at a time.

• Syntax:

Example program

ButtonTest.py Output

from tkinter import*
root=Tk()
root.title("KSR window") #giving the
title to the window
cb1=Checkbutton(root,text='Python')
cb2=Checkbutton(root,text='Graphics')
m=Radiobutton(root,text='Male',value
=0)
f=Radiobutton(root,text='Female',valu
e=1)
cb1.pack()
cb2.pack()
m.pack()
f.pack()
root.mainloop()

Menu widget

The Menu widget is used to provide various commands to a user. These commands are

contained inside Menubutton.

Syntax:

menu_bar=Menu(root)

Menu example

Output

https://www.tutorialspoint.com/python/tk_checkbutton.htm
https://www.tutorialspoint.com/python/tk_checkbutton.htm
https://www.tutorialspoint.com/python/tk_radiobutton.htm

Python Programming

8 | P a g e

Turtle - Introduction
• Turtle graphics is a popular way for introducing programming to kids.

• Virtual turtles can be programmed to move around the screen.

• The turtle draws lines as it moves.

• The user can write turtle programs that draw beautiful shapes and learn to program at the same

time.

Example to draw ‘square’

Sq.py Output

from turtle import *

forward(100)

left(90)

forward(100)

left(90)

forward(100)

left(90)

forward(100)

The turtle draws a line behind it as it moves. This program draws a square. The steps given to the

program are:

• Move forward 100 steps. (In the beginning, the turtle is facing to the right.)

• Turn 90 degrees to the left.

• Move forward 100 steps.

from tkinter import*
root=Tk()
root.title("KSR Window")
menu_bar=Menu(root)
file_menu=Menu(menu_bar,tearoff=0)
file_menu.add_command(label='New
File',command=root.destroy)
file_menu.add_command(label='Open
',command=root.destroy)
file_menu.add_command(label='Save',command=root.destroy)
file_menu.add_command(label='Save
As',command=root.destroy)
file_menu.add_command(label='Exit',command=root.destroy)
menu_bar.add_cascade(label='File',menu=file_menu)
root.config(menu=menu_bar)
root.mainloop()

Python Programming

9 | P a g e

• Turn 90 degrees to the left.

• Move forward 100 steps.

• Turn 90 degrees to the left.

• Move forward 100 steps. The turtle has ended up where it started.

Moving turtle

• By calling these functions, the turtle can be made to move around the screen. Imagine the turtle

holding a pen down on the ground and drawing a line as it moves around.

• The turtle's position is two numbers: the X coordinate and Y coordinate.

• forward(distance)

The forward() function moves the turtle distance number of steps in the current direction. If the

pen is down (see pendown() and penup()) a line will be drawn as the turtle moves forward.

If distance is a negative number, the turtle will move backwards.

• backward(distance)

The backward() function moves the turtle distance number of steps in opposite direction the

current direction. If the pen is down (see pendown() and penup()) a line will be drawn as the

turtle moves backward. If distance is a negative number, the turtle will move forward.

• right(angle)

The right() function will change the current direction clockwise by angle degrees. If you imagine

being above the turtle looking down, the turtle turning right looks like it is turning clockwise.

The turtle will not move; it will only change the direction it is facing.

• left(angle)

The left() function will change the current direction counter-clockwise or anti-clockwise

by angle degrees. If you imagine being above the turtle looking down, the turtle turning left

looks like it is turning counter-clockwise or anti-clockwise. The turtle will not move; it will only

change the direction it is facing.

• goto(x, y)

The goto() function will immediately move the turtle to the given x and y coordinates. If the pen

is down (see pendown() and penup()) a line will be drawn from the previous coordinates to the

new coordinates.

This example moves the to several x and y coordinates while drawing a line behind it:

from turtle import *

goto(50, 50)

goto(-50, 50)

goto(100, -50)

goto(-50, -50)

• setx(x)

The goto() function will immediately move the turtle to the given x coordinate. The

turtle's y coordinate will stay the same. If the pen is down (see pendown() and penup())

a line will be drawn from the previous coordinates to the new coordinates.

• sety(y)

Python Programming

10 | P a g e

import turtle

turtle.forward(100)

turtle.right(90)

turtle.forward(100)

turtle.home()

turtle.reset() #clears and sets the turtle to (0,0) position

#turtle.clear()

The goto() function will immediately move the turtle to the given *y *coordinate. The

turtle's x coordinate will stay the same. If the pen is down (see pendown() and penup())

a line will be drawn from the previous coordinates to the new coordinates.

• setheading(heading)

The setheading() function will change the current direction to the heading angle. If you

imagine being above the turtle looking down, the turtle turning left looks like it is

turning counter-clockwise or anti-clockwise. The turtle will not move; it will only change

the heading it is facing.

To draw ‘triangle’

import turtle

turtle.forward(100)

turtle.right(90)

turtle.forward(100)

turtle.home()

Drawing

• pendown()

The pendown() function will cause the turtle to draw as it moves around. The line it draws can

be set with the pencolor() and pensize() functions.

• penup()

The penup() function will cause the turtle to draw as it moves around. The line it draws can be

set with the pencolor() and pensize() functions.

• pensize(size)

The pensize() function sets the width of the line that the turtle draws as it moves.

• clear()

The clear() function will erase all the line drawings on the screen. This function does not move

the turtle.

• reset()

The reset()) function will erase all the line drawings on the screen and return the turtle to the (0,

0) coordinate and facing 0 degrees. This function does the same thing as calling the clear() and

home() function.

Example Program:

Python Programming

11 | P a g e

Mathematics
Provides functions for specialized mathematical operations. The “math” module provides

The following functions are provided by this module:

 Number-theoretic and representation functions

 Power and logarithmic function

 Trigonometric function

 Angular conversion

 Hyperbolic functions

 Special functions

 Constants

math.ceil(x)

– Return the ceiling of x, the smallest integer greater than or equal to x.

Example:

>>> math.ceil(12.3)

13

math.floor(x)

– Return the floor of x, the largest integer less than or equal to x.

>>> math.floor(12.3)

12

math.factorial(x)

– Return x factorial.

>>> math.factorial(5)

120

math.gcd(a, b)

– Return the greatest common divisor of the integers a and b.

>>> math.gcd(12,26)

2

math.exp(x)

– Return e**x

>>> math.exp(5)

148.4131591025766

math.log(x, base)

– With one argument, return the natural logarithm of x (to base e).

– With two arguments, return the logarithm of x to the given base.

>>> math.log(10,10)

1.0

>>> math.log(10,3)

2.095903274289385

Python Programming

12 | P a g e

math.pow(x, y)

– Return x raised to the power y.

>>> math.pow(2,3)

8.0

math.sqrt(x)

– Return the square root of x.

>>> math.sqrt(16)

4.0

math.cos(x)

math.sin(x)

– Return the cosine of x radians.

– Return the sine of x radians.

math.tan(x)

– Return the tangent of x radians.

math.degrees(x)

– Convert angle x from radians to degrees.

math.radians(x)

– Convert angle x from degrees to radians

math.cos(x)

math.sin(x)

– Return the cosine of x radians.

– Return the sine of x radians.

math.tan(x)

– Return the tangent of x radians.

math.degrees(x)

– Convert angle x from radians to degrees.

math.radians(x)

– Convert angle x from degrees to radians

math.pi

math.e

math.inf

– The mathematical constant p = 3.141592..., to available precision.

– The mathematical constant e = 2.718281..., to available precision.

– A floating-point positive infinity. (For negative infinity, use -math.inf)

Assertion
• Assertion is a conditional statement.

• This is used to test an assumption in the program.

• It verifies a conditional statement must be always TRUE.

• Syntax:

Python Programming

13 | P a g e

Example:
a=b'i want to meet you on sunday'
>>> a
b'i want to meet you on sunday'
>>> c=zlib.compress(a,level=2)
>>> c
b'x^\xcbT(O\xcc+Q(\xc9W\xc8MM-Q\xa8\xcc/U\xc8\xcfS(.\xcdKI\xac\x04\x00\x90\xbf\n@'
p=zlib.decompress(c)
>>> p
b'i want to meet you on sunday'

– assert True==fun(x)

– Here assert is keyword, fun() is user defined function, x is argument

– fun(x) returns a Boolean value which is either True or False.

– If the returned value is True continues, otherwise Raises an AssertionError

Data Compression
• The zlib module provides a lower-level interface to many of the functions in the zlib

compression library from the GNU project.

zlib.compress(data, level=-1)

– Compresses the bytes in data, returning a bytes object containing compressed data.

– level is an integer from 0 to 9 or -1 controlling the level of compression

– 1 is fastest and produces the least compression, 9 is slowe

zlib.decompress(data, wbits=MAX_WBITS, bufsize=DEF_BUF_SIZE)

- Decompresses the bytes in data, returning a bytes object containing the uncompressed

data.

zlib.adler32(data, value)

– Computes an Adler-32 checksum of data. (An Adler-32 checksum is almost as reliable as

a CRC32 but can be computed much more quickly.) The result is an unsigned 32-bit

integer.

– If value is present, it is used as the starting value of the checksum; otherwise, a default

value of 1 is used.

– Passing in value allows computing a running checksum over the concatenation of several

inputs.

– cr=zlib.adler32(a,12)

– >>> cr

– 2448624203

zlib.crc32(data, value)

– Computes a CRC (Cyclic Redundancy Check) checksum of data.

– The result is an unsigned 32-bit integer.

Python Programming

14 | P a g e

import time

import thread

def print_time(threadname,delay): #function definition

count=0

while count<5:

time.sleep(delay)

count+=1

print "The thread name is:",threadname,"Delay is:",delay,"\n"

#creating the thread

try:

thread.start_new_thread(print_time,("Thread-1",2))

thread.start_new_thread(print_time,("Thread-2",4))

– If value is present, it is used as the starting value of the checksum; otherwise, a default

value of 0 is used.

– Passing in value allows computing a running checksum over the concatenation of several

inputs.

– cr=zlib.crc32(a,12)

– >>> cr

– 1321257511

Multithreading

• The program in execution is called “process”

• Executing the number of processes simultaneously or concurrently is called “multi processing”

• The light-weight process is called “Thread”

• Executing the number of threads is called “multi threading”

• A process can be divided into several threads, each will do a specific task.

• Multiple threads within a process share same address space, and hence share information and

communicate more easily.

• The threads can communicate with each other which is called “Inter thread communication”

• These are cheaper than processes.

• The Thread has three things:

• It has beginning

• It has an execution sequence

• It has conclusion

• A thread can be pre-empted (interrupted)

• It can be temporarily put on hold, while other threads are running. This is called “Yielding”.

• To start new thread we call the following method in Python 2.7*

• thread.start_new_thread(function, arguments)

Creating the New thread

Python Programming

15 | P a g e

>>> The thread name is: Thread-1 Delay is: 2
The thread name is: Thread-2 Delay is: 4
The thread name is: Thread-1 Delay is: 2
The thread name is: Thread-1 Delay is: 2
The thread name is: Thread-2 Delay is: 4
The thread name is: Thread-1 Delay is: 2
The thread name is: Thread-1 Delay is: 2
The thread name is: Thread-2 Delay is: 4
The thread name is: Thread-2 Delay is: 4
The thread name is: Thread-2 Delay is: 4

import time

The threading module

• The newer threading module included with Python 2.4 provides much more powerful, high-level

support for threads than the thread module discussed in the previous section.

• The threading module exposes all the methods of the thread module and provides some

additional methods:

– threading.activeCount(): Returns the number of thread objects that are active.

– threading.currentThread(): Returns the number of thread objects in the caller's thread

control.

– threading.enumerate(): Returns a list of all thread objects that are currently active.

Thread class methods

• In addition to the methods, the threading module has the Thread class that implements

threading. The methods provided by the Thread class are as follows:

– run(): The run() method is the entry point for a thread.

– start(): The start() method starts a thread by calling the run method.

– join([time]): The join() waits for threads to terminate.

– isAlive(): The isAlive() method checks whether a thread is still executing.

– getName(): The getName() method returns the name of a thread.

– setName(): The setName() method sets the name of a thread.

Creating Thread Using Threading Module

• To implement a new thread using the threading module, you have to do the following −

– Define a new subclass of the Thread class.

– Override the init (self [,args]) method to add additional arguments.

– Then, override the run(self [,args]) method to implement what the thread should do

when started.

except:

print "There is some error in threading"

Python Programming

16 | P a g e

To know the information of the current threads

Threadtest1.py Output

print("The name of the First Thread

is",t1.getName(),"\n")

print("The Name of the Second Thread

is",t2.getName(),"\n")

print("The Name of the Second Thread

is",t3.getName(),"\n")

print("The active threads are

:",threading.activeCount())

print("The list of threads is:",threading.enumerate())

The active threads are : 5
The list of threads is:
[<_MainThread(MainThread, started
2544)>, <Thread(SockThread, started
daemon 3552)>, <MyThread(Guido
Thread, started 2560)>, <MyThread(Steev
Jobs, started 2088)>, <MyThread(KSR
Thread, started 1488)>]

Synchronizing Threads

• The threading module provided with Python includes a simple-to-implement locking mechanism

that allows you to synchronize threads.

• A new lock is created by calling the Lock() method, which returns the new lock.

• The acquire(blocking) method of the new lock object is used to force threads to run

synchronously. The optional blocking parameter enables you to control whether the thread

waits to acquire the lock.

import threading
#defining class
class MyThread(threading.Thread):

def init (self,threadID,n,c):
threading.Thread. init (self)
self.tID=threadID
self.name=n
self.counter=c

def run(self): #entry point to the thread
for a in range(1,11):

print("name",self.name,"ID is:",self.tID," :5 * ",a,"=",5*a,"\n")
time.sleep(self.counter) #used to delay

#creating the threads
t1=MyThread(1,"Guido Thread",2)
t2=MyThread(2,"Steev Jobs",4)
#starting the threads
t1.start()
t2.start()

Python Programming

17 | P a g e

• If blocking is set to 0, the thread returns immediately with a 0 value if the lock cannot be

acquired and with a 1 if the lock was acquired. If blocking is set to 1, the thread blocks and wait

for the lock to be released.

• The release() method of the new lock object is used to release the lock when it is no longer

required.

Testing
• Unit Test

– This test is invented by Eric Gamma in 1977

– This test is used to test the individual units or functions of the program.

– The function may be defined to do some specific task.

– This functions is tested for all possible value, for knowing where it is performing its

intended task correctly or not

Goals of Unit Test

There are three goals of unit test

– To make it easy to write tests

– To make it easy to run tests

– To make it easy to tell if the tests are passed

How many tests should we have
• Test at least one “typical” case.

• The objective of the testing is not to prove that your program is working.

• It is to try to find out where it does not test “Extreme” case you can think.

• For example you want to write test case for “sort()” function over a list.

• Then some issues you can consider are:

– What if the list contains equal number?

– Do the first element and last element moved to the correct position?

– Can you sort a 1-element list without getting an error?

– How about an empty list?

Python Programming

18 | P a g e

unittest module

• In Python we have a module called “unittest” to support unit test.

• to use these tests we create a class that Inherits the properties from “TestCase” class of this

module.

• Define a method in this class and use the different methods of the TestCase class.

Commonly used methods of TestCase class

assertEqual(a,b)

assertNotEqual(a,b)

assertTrue(x)

assertFalse(x)

assertIs(a,b)

assertIsNone(a,b)

assertIn(a,b)

assertNotIn(a,b)

	tkinter programming
	How to arrange these widgets in window
	Label widget
	Example Program:
	Button widget
	Entry widget
	Program to Create Simple Calculator
	Menu widget
	Syntax:

	Turtle - Introduction
	Example to draw ‘square’
	Moving turtle
	• goto(x, y)
	The goto() function will immediately move the turtle to the given x coordinate. The turtle's y coordinate will stay the same. If the pen is down (see pendown() and penup()) a line will be drawn from the previous coordinates to the new coordinates.
	The setheading() function will change the current direction to the heading angle. If you imagine being above the turtle looking down, the turtle turning left looks like it is turning counter-clockwise or anti-clockwise. The turtle will not move; it wi...
	To draw ‘triangle’
	Drawing
	• penup()
	• clear()
	• reset()
	Example Program:
	math.ceil(x)
	math.floor(x)
	math.factorial(x)
	math.gcd(a, b)
	math.exp(x)
	math.log(x, base)
	math.pow(x, y)
	math.sqrt(x)
	math.cos(x)
	math.tan(x)
	math.degrees(x)
	math.radians(x)
	math.cos(x) math.sin(x)
	math.tan(x) (1)
	math.degrees(x) (1)
	math.radians(x) (1)
	math.pi math.e math.inf

	Assertion
	Data Compression
	zlib.compress(data, level=-1)
	zlib.decompress(data, wbits=MAX_WBITS, bufsize=DEF_BUF_SIZE)
	zlib.adler32(data, value)
	zlib.crc32(data, value)

	Multithreading
	Creating the New thread
	Thread class methods
	To know the information of the current threads

	Testing
	• Unit Test
	Goals of Unit Test

	How many tests should we have
	unittest module

